Advances in Data Science Seminar: Differential equations and deep learning

Time: 14:00 - 15:00

Venue: Online

Sorry, this event has now ended.

Leading researchers present their recent advances in Machine Learning and Computational Statistics. This is an online seminar from the University of Manchester's Institute for Data Science & Artificial Intelligence.

We will be video recording all of the talks in this year's Advances in Data Science seminar series. If you have registered for any of the seminars and oppose to us doing so, please notify us immediately.

Speaker: Markus Heinonen (Aalto University)

TitleDifferential equations and deep learning

Abstract: 

Differential equations describe the evolution of a system’s state, and are widely applied in natural sciences. Deep learning, on the other hand, is based on learning a sequential of the input towards a more complex state. Recently several groups have proposed to connect these, seeminly unconnected, branches of science together by re-imagining neural networks as executing a dynamical system, with pioneering works of Neural ODEs (Chen et al 2018) and deep Gaussian process flows (Hegde et al 2019).

In this talk I will describe how to model and learn high-dimensional ODEs and SDEs as Gaussian processes and neural networks, and how to employ them for deep learning. I will discuss the open problems when moving to dynamical system based machine learning.

Bio: 

PhD Markus Heinonen is an academy research fellow at Aalto University, Finland with focus on Bayesian deep learning, Gaussian processes, dynamical systems and their applications (https://users.aalto.fi/~heinom10)